Operating System Concepts

Lesson 6

Objectives

e Process management
e Process Creation, Execution and Termination
e Process Hierarchies
e Process Control Block
PROCESS MANAGEMENT
1. A process is a program in execution. It is a unit of work within the system.
Program is a passive entity, process is an active entity.
2. Process needs resources to accomplish its task
a. CPU, memory, /O, files
b. Initialization data
3. Process termination requires reclaim of any reusable resources
4. Single-threaded process has one program counter specifying location of next
instruction to execute
a. Process executes instructions sequentially, one at a time, until completion
5. Multi-threaded process has one program counter per thread
6. Typically system has many processes, some user, some operating system running
concurrently on one or more CPUs
a. Concurrency by multiplexing the CPUs among the processes / threads
Process management activities
The operating system is responsible for the following activities in connection with
process management:
e Creating and deleting both user and system processes
e Suspending and resuming processes
e Providing mechanisms for process synchronization
e Providing mechanisms for process communication
e Providing mechanisms for deadlock handling
For example we have 4 processes namely A, B, C and D. Only one program active at any

instant, in a multiprogramming environment the execution can be demonstrated as below.

Operating System Concepts

Here (a) shows process queue, with initially single program counter, in (b) each process
is distinguished by different program counters, while (c) shows the time-division of the
four on time-lines.

One program counter

- Four program counters
A Process
¢ switch 2 D — —
AL g
€ g C — s
o
W c A ‘ BY c l’ DY B = -
E LT —
\V D Time —=
(a) (b) (c)

PROCESS HIERARCHIES
1. Parent creates a child process, child processes can create their own processes
2. Forms a hierarchy
e UNIX calls this a "process group™
3. Windows has no concept of process hierarchy
o all processes are created equal
PROCESS STATES
Generally a process can be divided into five states, from its creation to termination, as

shown below:

o)

admitted interrupt exit terminated

scheduler dispatch

I/O or event completion I/O or event wait

waiting

New: The process is being created
Running: Instructions are being executed
Waiting: The process is waiting for some event to occur (such as an 1/0 completion or

reception of a signal)

Operating System Concepts

Ready: The process is waiting to be assigned to a processor

Terminated: The process have finished execution

PROCESS CONTROL BLOCK

Each process is represented in the operating system by a process control block (PCB)—
also called a task control block. It guarantees the process implementation. Following
information and steps are involved. It contains entire process status and hardware status
being involved in process. These are stored in process tables. Here are given the Fields of

a process table entry.

Process management
Registers

Program counter
Program status word

Memory management
Pointer to text segment
Pointer to data segment
Pointer to stack segment

File management
Root directory
Working directory
File descriptors

Stack pointer User ID
Process state Group ID
Priority

Scheduling parameters

Process ID

Parent process

Process group

Signals

Time when process started
CPU time used

Children’s CPU time

Time of next alarm

e The code segment, also known as text segment contains the machine instructions
of the program. The code can be thought of like the text of a novel: It tells the
story of what the program does.

e The data segment contains the static data of the program, i.e. the variables that
exist throughout program execution. Global variables in a C or C++ program are
static, as are variables declared as static in C, C++, or Java.

e The stack segment contains the system stack, which is used as temporary storage.
The stack is a simple data structure with a LIFO (last-in first-out) access policy.
Items are only added to or removed from the "top" of the stack. Implementing a
stack requires only a block of memory (e.g. an array in a HLL) and a stack
pointer which tells us where the top of the stack is.

Also given a skeleton of what lowest level of OS does when an interrupt occurs.

Operating System Concepts

1. Hardware stacks program counter, etc.
2. Hardware loads new program counter from interrupt vector.
3. Assembly language procedure saves registers.

4. Assembly language procedure sets up new stack.
5. C interrupt service runs (typically reads and buffers input).
6. Scheduler decides which process is to run next.
7. C procedure returns to the assembly code.

8. Assembly language procedure starts up new current process.

It is a common operating system practice that simultaneously several processes are being

executed in a time division fashion. So CPU switches among them in a sophisticated

fashion so that each process thinks that he is utilizing the CPU alone. Here is a diagram

showing this fact.

executing J_L

operating system process P,

interrupt or system call

| save state into PCB, |

.
.
]

[reload state from PCB, |

interrupt or system call

l—\ /

| save state into PCB; |

|re|oad state from PCBO|

executing]v[‘\—l

executing

idle

idle

